深圳先进院钟超团队在半人工光合作用领域取得新突破

2022/05/07

科学手段助力绿色制造

细菌生物被膜在自然界中普遍存在,由细菌及其分泌的胞外基质共同组成,这种天然的活体材料具有功能可编程、自我再生以及环境耐受等特点,因此在规模化光催化方面有较大的应用潜力。比如,在当前的发酵体系中采用的多是悬浮细胞,无法固着。而生物被膜由于内在的贴壁生长特性,因此可以通过流动床反应器的设计,实现光催化产物的源源不断生产。

研究人员通过工程改造的方式,使得构建的大肠杆菌生物被膜具备了矿化和固定二氧化碳的能力,成功构建了能实现光催化还原二氧化碳生成甲酸的半人工光合系统。

然而,在生物被膜半人工光合作用体系当中,研究人员仅仅引入了单一的酶,还无法实现高附加值经济产物的生成。未来,研究团队会继续对微生物进行改造,构建二氧化碳到长链高附加值化学分子的合成通路,并对生物被膜的光催化反应体系进行中试发酵尝试,验证该成果体系的规模化生产能力。

当前,在合成生物学领域,国内出现了二氧化碳转化为淀粉或葡萄糖的重大突破,然而整个体系关键的第一步反应,二氧化碳固定仍然是通过化学催化方法实现,增加了反应体系的复杂性。该研究通过半人工光合体系的构建实现了全细胞的二氧化碳固定,未来有望通过全链条优化,实现基于全细胞体系的二氧化碳到高附加值长链化合物的转化。

“我们利用合成生物技术工程改造细菌生物被膜,构建了一个全新的生物-无机兼容界面,并基于此实现了从单酶到全细胞尺度上可循环利用的半人工光合作用体系,为未来可持续性半人工光合体系的开发提供了一种新的思路,也体现了材料合成生物学技术在能源领域的广阔应用前景。”钟超表示。

论文截图

返回列表